Световая фаза фотосинтеза
Световая фаза фотосинтеза зависит от поступления в клетку светового излучения (фотонов). В природе фотосинтез стимулируется солнечным светом.
Содержащиеся в хлоропластах растительных клеток хлорофиллы и другие пигменты улавливают излучение определенных длин волн. Энергия фотонов переводит электроны пигментов на более высокий энергетический уровень. Вместо того, чтобы снова вернуться на прежний энергетический уровень с обратным излучение энергии, электроны захватываются акцепторами и переносятся по электрон-транспортной цепи, встроенной в мембрану тилакоидов хлоропластов.
По пути следования электронов их энергия частично теряется, а частично тратится на синтез АТФ и восстановление НАДФ. Таким образом солнечная энергия переводится в энергию химических связей, используемую потом в темновой фазе на синтез органических веществ. В этом смысле световую фазу фотосинтеза можно назвать подготовительной.
Электрон-транспортную цепь составляют пигменты, ферменты и коферменты. Одни локализованы в мембране почти неподвижно, другие перемещаются, выполняя роль переносчиков электронов и протонов.
Однако световые реакции фотосинтеза происходят не только на мембране тилакоидов. Также фотоны света запускают фотолиз воды. В результате фотолиза вода распадается на протоны водорода (H+), электроны (e-) и атомы кислорода (O). Последние, попарно объединяясь, выделяются из клетки в виде молекулярного кислорода (O2).
Причина необходимости фотолиза становится ясна при более подробном рассмотрении реакций световой фазы, протекающих на тилакоидной мембране.
Здесь функционируют две фотосистемы. Это так называемые фотосистема I и фотосистема II. Каждая из них улавливает световую энергию, и от каждой отрываются возбужденные электроны, которые принимаются своими акцепторами. В фотосистемах образуются электронные дырки, т. е. недостаток электронов. Хлорофиллы реакционных центров фотосистем становятся положительно заряженными. Чтобы система снова могла работать, необходимо эти дырки устранять за счет притока электронов из вне.
В растениях световая фаза фотосинтеза организована таким образом, что фотосистема I заполняет дырки электронами, транспортирующимися от фотосистемы II. А та получает электроны, которые образуются при фотолизе воды.
Электроны, вышедшие из первой фотосистемы, пройдя по электрон-транспортной цепи, достигают НАДФ. Этот кофермент восстанавливается и заряжается отрицательно. После этого притягивает протоны водорода, превращаясь в НАДФ·H2. Таким образом, фотолиз воды необходим для получения протонов и электронов.
По пути следования электронов от второй фотосистемы к первой происходит синтез АТФ за счет накопленного электро-химического градиента — разницы зарядов по разные стороны мембраны.
Рассмотрим подробнее упрощенную схему световой фазы фотосинтеза:
Помимо энергии света для фотолиза воды нужен еще фермент, который отмечен на схеме как «водоокисляющий комплекс». Он встроен в фотосистему. Образовавшиеся протоны остаются в люмене, а электроны уходят в фотосистему II (PSII). Поток электронов показан синей пунктирной стрелкой.
Надписи P680 и P700 в фотосистемах обозначают длины волн света, которые преимущественно поглощаются реакционными центрами PS. Сами фотосистемы имеют сложное строение. Кроме испускающего электроны реакционного центра, они включают также светособирающий комплекс.
Из PSII электроны передаются на кофермент пластохинон. Заряжаясь отрицательно, он присоединяет протоны из стромы. Поток протонов показан красной пунктирной стрелкой. Пластохинон транспортирует электроны и протоны до ферментативного комплекса цитохром-b6f. Последний окисляет пластохинон.
Цитохром-b6f перекачивает протоны в люмен, а электроны передает следующему коферменту-переносчику – пластоцианину.
В это время в люмене за счет протонов, перенесенных из стромы и образовавшихся в результате фотолиза воды, накапливается достаточный положительный заряд, чтобы «сработал» фермент АТФ-синтаза. Через его каналы протоны устремляются на внешнюю сторону тилакоидной мембраны. Эта энергия используется АТФ-синтазой для синтеза АТФ из АДФ и фосфорной кислоты.
Пластоцианин транспортирует электроны в PSI, восстанавливая ее. Отсюда в результате действия света электроны передаются на ферредоксин. Под действием фермента ферредоксин-НАДФ-редуктазы он восстанавливает НАДФ. При этом также используются протоны, находящиеся в строме хлоропласта. Сюда они поступили в том числе и через каналы АТФ-синтазы.
Рассмотренные реакции световой фазы представляют собой нециклический транспорт электронов. Однако данный этап фотосинтеза может протекать и по циклическому пути. В этом случае ферродоксин восстанавливает не НАДФ, а пластохинон. Таким образом, PSI получает свои электроны обратно. В случае циклического транспорта электронов синтеза НАДФ·H2 не происходит, световая фаза дает только АТФ.
Нециклический (обычный) транспорт электронов называют также Z-схемой переноса электронов. Если изобразить поток электронов с учетом постепенного понижения их энергии, то получится схема, похожая на повернутую на 90° букву Z.