Разделы

Молекулярная биология

Биология

Хемосинтез

Хемосинтез — древнейший тип автотрофного питания, который в процессе эволюции мог появиться раньше фотосинтеза. В отличие от фотосинтеза при хемосинтезе первичным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

Хемосинтез наблюдается только у ряда прокариот. Многие хемосинтетики обитают в недоступных для других организмов местах: на огромных глубинах, в бескислородных условиях.

Хемосинтез в каком-то смысле уникальное явление. Хемосинтезирующие организмы не зависят от энергии солнечного света ни напрямую как растения, ни косвенно как животные. Исключением являются бактерии, окисляющие аммиак, т. к. последний выделяется в результате гниения органики.

Сходство хемосинтеза с фотосинтезом:

Отличия хемосинтеза:

Хемосинтетики получают энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитрита и др. Как видно, используются неорганические вещества.

В зависимости от окисляемого субстрата для получения энергии хемосинтетиков делят на группы: железобактерии, серобактерии, метанообразующие археи, нитрифицирующие бактерии и др.

У аэробных хемосинтезирующих организмов акцептором электронов и водорода служит кислород, т. е. он выступает в роли окислителя.

Хемотрофы играют важную роль в круговороте веществ, особенно азота, поддерживают плодородие почв.

Железобактерии

Представители железобактерий: нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы.

Распространены в пресных и морских водоемах. Образуют отложения железных руд.

Водный сток с железобактериями

Окисляют двухвалентное железо до трехвалентного:

4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

Кроме энергии в этой реакции получается углекислый газ, который связывается в органические вещества.

Кроме бактерий окисляющих железо, существуют бактерии окисляющие марганец.

Серобактерии

Серобактерии также называются тиобактериями. Это достаточно разнообразная группа микроорганизмов. Есть представители получающие энергию как от солнца (фототрофы), так и путем окисления соединений с восстановленной серой – пурпурные и зеленые серобактерии, некоторые цианеи.

2S + 3O2 + 2H2O → 2H2SO4 + E

В анаэробных условиях в качестве акцептора водорода используют нитрат.

Бесцветные серобактерии (беггиаты, тиотриксы, ахроматиумы, макромонасы, акваспириллюмы) обитают в содержащих сероводород водоемах. Они 100%-ые хемосинтетики. Окисляют сероводород:

2H2S + O2 → 2H2O + 2S + E

Образующаяся в результате реакции сера накапливается в бактериях или выделяется в окружающую среду в виде хлопьев. Если сероводорода недостаточно, что эта сера может также окисляться (до серной кислоты, см. реакцию выше).

Вместо сероводорода могут также окисляться сульфиды и др.

Нитрифицирующие бактерии

Типичные представители: азотобактер, нитрозомонас, нитрозоспира.

Нитрифицирующие бактерии обитают в почве и водоемах. Энергию получают за счет окисления аммиака и азотистой кислоты, поэтому играют важную роль в круговороте азота.

Аммиак образуется при гниении белков. Окисление бактериями аммиака приводит к образованию азотистой кислоты:

2NH3 + 3O2 → HNO2 + 2H2O + E

Другая группа бактерий окисляет азотистую кислоту до азотной:

2HNO2 + O2 → 2HNO3 + E

Две реакции не равноценны по выделению энернгии. Если при окислении аммиака выделяется более 600 кДж, то при окислении азотистой кислоты – только около 150 кДж.

Азотная кислота в почве образует соли — нитраты, которые обеспечивают плодородие почвы.

Водородные бактерии

В основном распространены в почве. Окисляют водород, образующийся при анаэробном разложении органики микроорганизмами.

2H2 + O2 → 2H2O + E

Данная реакция катализируется ферментом гидрогеназой.

Метанобразующие археи и бактерии

Типичные представители: метанобактерии, метаносарцины, метанококки.

Археи строгие анаэробы, обитают в бескислородной среде.

Хемосинтез идет без участия кислорода. Чаще всего восстанавливают углекислый газ до метана водородом:

CO2 + 4H2 → CH4 + 2H2O + E