Основы биологии

Клеточная, или цитоплазматическая, мембрана

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит в состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

Клеточная мембрана имеет достаточно сложное строение, которое можно рассмотреть в электронный микроскоп. Грубо говоря, она состоит из двойного слоя липидов (жиров), в который в разных местах включены различные пептиды (белки). Общая толщина мембраны составляет около 5-10 нм.

Общий план строения клеточной мембраны универсален для всего живого мира. Однако мембраны животных содержат включения холестерина, который определяет ее жесткость. Отличие мембран разных царств организмов в основном касается надмембранных образований (слоев). Так у растений и грибов над мембраной (с внешней стороны) находится клеточная стенка. У растений она состоит преимущественно из целлюлозы, а у грибов — из вещества хитина. У животных надмембранный слой называется гликокаликсом.

Более глубокое изучение строения клеточной мембраны открывает многие ее особенности, связанные с выполняемыми функциями.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна. Получается достаточно прочная структура, ограждающая содержимое клетки от внешней среды.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты, обладающий гидрофильными свойствами (т. е. притягивает молекулы воды). Второй конец фосфолипида ‒ это цепи жирных кислот, обладающие гидрофобными свойствами (не образуют с водой водородных связей).

Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь. Белковые включения в клеточной мембране распределены неравномерно, кроме того они подвижны (так как фосфолипиды в бислое обладают боковой подвижностью).

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Интегральные белки проходят через всю толщу мембраны, и их концы торчат по обеим ее сторонам. В основном выполняют транспортную функцию. У полуинтегральных белков один конец находится в толще мембраны, а второй выходит наружу (с внешней или внутренней) стороны. Выполняют ферментативную и рецепторную функции. Периферические белки находятся на внешней или внутренней поверхности мембраны.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Особенности строения клеточной мембраны говорят о том, что она является основным компонентом поверхностного комплекса клетки, но не единственным. Другими его компонентами являются надмембранный слой и субмембранный слой.

Гликокаликс (надмембранный слой животных) образуют олигосахариды и полисахариды, а также периферические белки и выступающие части интегральных белков. Компоненты гликокаликса выполняют рецепторную функцию.

Кроме гликокаликса у клеток животных бывают и другие надмембранные образования: слизи, хитин, перилемма (подобна мембране).

Надмембранным образованием у растений и грибов является клеточная стенка.

Субмембранный слой клетки — это поверхностная цитоплазма (гиалоплазма) с входящей в нее опорно-сократительной системой клетки, фибриллы которой взаимодействуют с белками, входящими в клеточную мембрану. По таким соединениям молекул передаются различные сигналы.

Функции клеточной мембраны

Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную. Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.

Такая функциональность обеспечивается особым строением клеточной мембраны.

В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ. Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Интегральные (пронизывающие мембрану насквозь) белки, объединяясь, часто работают по принципу открывающихся и закрывающихся каналов, могут образовывать пору для перемещения некоторых веществ через мембрану. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней (связывает определенное вещество), и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружной стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировочную и др. Однако их можно рассмотреть как "подфункции" уже рассмотренных.

Цитология



О статье